Электрический ток и индуктивность проводника.
Самая простая электрическая цепь, состоящая из электрического проводника в виде обычного изолированного провода, и источника переменного тока, представляющего собой понижающий трансформатор, подключённый к бытовой электрической сети, будет примером для описания в этом материале.
В электрической цепи, в которой протекает переменный ток, на величину этого проходящего электрического тока влияет и сопротивление проводника, включённого в цепь, и магнитное поле вокруг проводника, создаваемого при прохождении тока через этот проводник. Получается, что электрическая цепь с переменным током обладает ещё и своими магнитными свойствами, характеризующими величиной, какой является индуктивность. В данном случае — это индуктивность проводника или всей электрической цепи.
Доступными словами будет сказано, чем больше по величине проходящий через проводник переменный ток, тем больше по величине будет создаваемое вокруг этого же проводника переменное магнитное поле.
Но не все проводники обладают одинаковой электрической проводимостью. Каждый материал, используемый для изготовления проводника, обладает своими свойствами, от которых зависит и величина сопротивления электрическому току, называемая активным сопротивлением проводника, и величина индуктивного сопротивления, определяемое индуктивностью проводника, то есть своими магнитными свойствами.
Электрический дроссель.
У прямого проводника сопротивление переменному току, создаваемое магнитным полем проводника, индуктивность небольшая. А если этот же проводник свернуть в катушку, то его индуктивность сразу и на много увеличится. Увеличится его индуктивное сопротивление переменному току и электрический ток в такой цепи уменьшится. Для переменного тока индуктивность полученной катушки является преградой и вокруг катушки образуется электромагнитное поле, величина которого будет зависеть от силы проходящего через катушку переменного тока. А для постоянного тока индуктивность не оказывает такого влияния, как для переменного тока, а определяет своё влияние только лишь активным сопротивлением проводника. Получается, что индуктивная катушка, обладающая большим сопротивлением для переменного тока и очень малым сопротивлением постоянному, будет характеризовать устройство, именуемое электрическим дросселем.
Любой электрический проводник, свёрнутый в катушку, в действующей электрической цепи с переменным током будет представлять собой катушку индуктивности, выполняющую роль дросселя, вариометра(изменяющего индуктивность) или реактора и зависеть от величины и частоты проходящего через катушку тока.
Единицой индуктивности является генри(Гн).
Графическое изображение индуктивных элементов на схеме.
Катушки индуктивности могут иметь винтовую, спиральную или винтоспиральную намотку из изолированного проводника и иметь значительную индуктивность и малое активное сопротивление и малую электрическую ёмкость. Катушки наматываются на каркас с использованием сердечников или без них.
Волнообразная линия, нарисованная параллельно рисунку сердечника или без него и есть наш катушка индуктивности. Напоминает изображение части электрического трансформатора.
Так же как у трансформатора указывается начало обмотки толстой жирной точкой и указывается сердечник, если имеется, а вот обозначается на схеме буквой (L). Рядом устанавливается дополнительный буквенный символ, в зависимости от типа дросселя : L — LL(дроссель ламп люминесцентного освещения), G — LG(реактор), R — LR(обмотка возбуждения генератора).
Катушка индуктивности сама по себе является конструктивной составляющей единицей устройства, а дроссель, вариометр, реактор — это уже целая функционирующая единица устройства, конструкция которого определяется его назначением. То есть, используемая в электросхеме индуктивная катушка в действующей цепи будет являться или дросселем или реактором или вариометром. В неработающей системе катушка индуктивности будет только катушкой и не больше. Это моё мнение и его никому не навязываю, только лишь делюсь.